Accenture Enkitec Group E4 Webinar

Tuesday, January 10, 2017

Removing Unnecessary Indexes: 3.Cost of Maintaining Indexes

This is the third post in a series about unnecessary indexes and some of the challenges that they present.
In this post I want to look at how to quantify the overhead of index maintenance, and estimate the benefit of removing redundant indexes.
Let’s conduct an experiment. I will set up the same table and indexes as in the previous posts in this series, but this time I will put them into the RECYCLE buffer pool, to which I have allocated the minimum possible 4M of memory, and I will allocate 25% free space to the indexes. The idea is not to benefit from the buffer cache, but suffer the pain of the physical I/O.
CREATE TABLE t (a NUMBER, b NUMBER, c NUMBER, d NUMBER
,CONSTRAINT t_pk PRIMARY KEY (a) USING INDEX STORAGE (BUFFER_POOL RECYCLE)
) STORAGE(BUFFER_POOL RECYCLE);

CREATE INDEX t_ab  ON t (a,b)   STORAGE(BUFFER_POOL RECYCLE) PCTFREE 25;
CREATE INDEX t_bc  ON t (b,c)   STORAGE(BUFFER_POOL RECYCLE) PCTFREE 25;
CREATE INDEX t_bcd ON t (b,c,d) STORAGE(BUFFER_POOL RECYCLE) PCTFREE 25;

INSERT /*+APPEND*/ INTO t
WITH x AS (
SELECT  rownum-1 n FROM DUAL connect by level <= 1E5)
SELECT  n
, MOD(n,100)
, ROUND(MOD(n,100),-1)
, dbms_random.value(1,100)
FROM   x
/
CREATE INDEX T_BCD_ROUND ON T (B, C, ROUND(D,0)) STORAGE(BUFFER_POOL RECYCLE) PCTFREE 25;
CREATE INDEX T_BCD_DESC  ON T (B, C, D DESC)     STORAGE(BUFFER_POOL RECYCLE) PCTFREE 25;

EXEC dbms_stats.gather_table_stats(null,'T',cascade=>TRUE,method_opt=>'FOR ALL COLUMNS SIZE 1 FOR COLUMNS SIZE 1 (B,C)');
The table and indexes really too large to fit in the recycle buffer pool, so there will be physical read as blocks are loaded into the buffer cache, and physical write as dirty blocks are pushed out.
SELECT s.owner, s.segment_name
,      s.blocks, s.bytes/1024/1024 Mb
,      t.blocks
FROM   dba_segments s
,      dba_tables t
WHERE  t.table_name = 'T'
AND    s.segment_type = 'TABLE'
AND    s.segment_name = t.table_name
/

OWNER      SEGMENT_NAME     BLOCKS         MB     BLOCKS
---------- ------------ ---------- ---------- ----------
SYSADM     T                   640          5        543

SELECT  s.owner, s.segment_name
,       s.blocks, s.bytes/1024/1024 Mb
,       i.leaf_blocks
FROM    dba_segments s
,       dba_indexes i
WHERE   s.owner = i.owner
AND     s.segment_name = i.index_name
AND     i.table_name = 'T'
/

OWNER      SEGMENT_NAME     BLOCKS         MB LEAF_BLOCKS
---------- ------------ ---------- ---------- -----------
SYSADM     T_PK                256          2         187
SYSADM     T_AB                256          2         237
SYSADM     T_BC                256          2         213
SYSADM     T_BCD               512          4         488
SYSADM     T_BCD_ROUND         384          3         336
SYSADM     T_BCD_DESC          768          6         675
Now I will run a PL/SQL loop that randomly updates rows in the table with random values, 500,000 times. The random nature of the update will minimize the benefit of the caching.  The database will continuously have to load blocks from disk back into buffer cache.
DECLARE 
  l_counter INTEGER := 0;
  l_t1 DATE;
  l_r1 INTEGER;
  l_r2 INTEGER;
  l_module VARCHAR2(64);
  l_action VARCHAR2(64);
BEGIN
  dbms_application_info.read_module(l_module, l_action);
  dbms_application_info.set_module('REDUNDANT','UPDATE TEST');
  l_t1 := SYSDATE + &&runtime/86400;
  WHILE l_t1 >= SYSDATE AND l_counter < 5e5 LOOP
    l_r1 := round(dbms_random.value(1,100),0);
    l_r2 := round(dbms_random.value(1,100),0);
    UPDATE t
    SET    c = l_r2
    ,      d = ROUND(l_r2,-1)
    WHERE  a = l_r1;
    l_counter := l_counter + 1;
    COMMIT;
  END LOOP; 
  dbms_output.put_line(l_counter||' rows updated');
  dbms_application_info.set_module(l_module, l_action);
END;
/
The activity in the buffer cache is visible via v$buffer_pool_statistics.
select * from v$buffer_pool_statistics where name = 'RECYCLE';
Before:
        ID NAME                 BLOCK_SIZE  SET_MSIZE  CNUM_REPL CNUM_WRITE   CNUM_SET    BUF_GOT  SUM_WRITE   SUM_SCAN
---------- -------------------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
FREE_BUFFER_WAIT WRITE_COMPLETE_WAIT BUFFER_BUSY_WAIT FREE_BUFFER_INSPECTED DIRTY_BUFFERS_INSPECTED DB_BLOCK_CHANGE
---------------- ------------------- ---------------- --------------------- ----------------------- ---------------
DB_BLOCK_GETS CONSISTENT_GETS PHYSICAL_READS PHYSICAL_WRITES
------------- --------------- -------------- ---------------
         2 RECYCLE                    8192        490        490          0        490     482786     758695          0
           65466               22517                0                889060                  612270        49971577
     71349961        18260691         385878          758695
After:
         2 RECYCLE                    8192        490        459         31        490     518646     853441          0
           73457               25942                0                981089                  688777        57003938
     81763622        19260981         413463          853441
We can see there have been physical reads and writes on objects in the recycle pool.
This is the execution plan of the statement in the PL/SQL loop. The update occurs in line 1 of the plan.
SQL_ID  3f305xbd6ts1d, child number 1
-------------------------------------
UPDATE T SET C = :B2 , D = ROUND(:B2 ,-1) WHERE A = :B1

Plan hash value: 795017363
---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | UPDATE STATEMENT   |      |       |       |     2 (100)|          |
|   1 |  UPDATE            | T    |       |       |            |          |
|*  2 |   INDEX UNIQUE SCAN| T_PK |     1 |    33 |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------

Profile DML Overhead

Now, I will profile the recent ASH data for my test (filtered by module and action) by object and event, but we will only look at line 1 of execution plans where the SQL_OPNAME indicates a DML statement. Thus we are looking exclusively at the overhead of modifying data, and not the overhead of finding it in the first place.
The current_obj# and current_file# is used to identify database segments and tablespace name. However, these columns are reliable only for wait events that relate to physical I/O. They are not, for example, valid for CPU events.
column sql_id format a13
column sql_plan_hash_value heading 'SQL Plan|Hash Value'
column sql_plan_line_id heading 'SQL Plan|Line ID'
column top_level_sql_id format a13 heading 'Top Level|SQL ID'
column event format a25
column object_type format a6 heading 'Object|Type'
column object_name format a11
column p1text format a9
column p2text format a6
column p3text format a7
column action format a11
column ash_secs heading 'ASH|secs' format 9999
column current_file# heading 'File|#' format 9999
column current_obj# heading 'Curr|Obj#' format 999999
compute sum of ash_secs on report
break on report
WITH x AS (
SELECT event, action, current_obj#, current_file#
,      p1text, p2text, p3text
,      SUM(1) ash_secs
FROM   v$active_session_history
WHERE  module = 'REDUNDANT'
AND    sample_time >= SYSDATE - (10+&&runtime)/86400
AND    sql_plan_line_id = 1 /*line 1 is where the update occurs*/
AND    sql_opname IN('INSERT','UPDATE','DELETE','UPSERT') /*DML Statement*/
GROUP BY event, action, current_obj#, current_file#, p1text, p2text, p3text
)
SELECT x.*
,      o.object_type, o.object_name
,      f.tablespace_name
FROM   x
LEFT OUTER JOIN dba_objects o 
 ON  o.object_id = x.current_obj# 
 AND event is not null
LEFT OUTER JOIN dba_data_files f 
 ON  f.file_id = x.current_file# 
 AND event is not null
AND x.p1text = 'file#'
AND x.p2text = 'block#'
ORDER BY ash_secs DESC 
/
The test ran for 314 seconds, though we only spent 210 seconds updating the table. However, we can see how much time was spent time of writing to various indexes. Note that T_BC is still maintained even though it is invisible.
                                         Curr  File                            ASH Object
EVENT                     ACTION         Obj#     # P1TEXT    P2TEXT P3TEXT   secs Type   OBJECT_NAME TABLESPACE_NAME
------------------------- ----------- ------- ----- --------- ------ ------- ----- ------ ----------- -----------------------
free buffer waits         UPDATE TEST      -1     0 file#     block# set-id#    44
                          UPDATE TEST      -1     0 file#     block# blocks     28
write complete waits      UPDATE TEST   99411     4 file#     block#            19 INDEX  T_BC        PSDEFAULT
free buffer waits         UPDATE TEST   99412     0 file#     block# set-id#    14 INDEX  T_BCD
write complete waits      UPDATE TEST   99414     4 file#     block#            14 INDEX  T_BCD_DESC  PSDEFAULT
free buffer waits         UPDATE TEST   99411     0 file#     block# set-id#    12 INDEX  T_BC
write complete waits      UPDATE TEST   99412     4 file#     block#            12 INDEX  T_BCD       PSDEFAULT
write complete waits      UPDATE TEST   99413     4 file#     block#            11 INDEX  T_BCD_ROUND PSDEFAULT
                          UPDATE TEST   99411     0 file#     block# blocks     11
                          UPDATE TEST   99413     0 file#     block# blocks      8
free buffer waits         UPDATE TEST   99413     0 file#     block# set-id#     7 INDEX  T_BCD_ROUND
free buffer waits         UPDATE TEST   99414     0 file#     block# set-id#     7 INDEX  T_BCD_DESC
                          UPDATE TEST   99414     0 file#     block# blocks      5
                          UPDATE TEST   99412     0 file#     block# blocks      5
free buffer waits         UPDATE TEST   99412     4 file#     block# set-id#     3 INDEX  T_BCD       PSDEFAULT
log file switch (private  UPDATE TEST   99411     4                              1 INDEX  T_BC
strand flush incomplete)
free buffer waits         UPDATE TEST   99411     4 file#     block# set-id#     1 INDEX  T_BC        PSDEFAULT
                          UPDATE TEST   99413     4 file#     block# blocks      1
                          UPDATE TEST      -1     0 file#     block#             1
                          UPDATE TEST   99411     4 file#     block# blocks      1
                          UPDATE TEST   99411     0 file#     block#             1
log file switch completio UPDATE TEST   99414     0                              1 INDEX  T_BCD_DESC
free buffer waits         UPDATE TEST      -1     4 file#     block# set-id#     1                    PSDEFAULT
                          UPDATE TEST      -1     4 file#     block# blocks      1
                          UPDATE TEST   99414     0 file#     block#             1
                                                                             -----
sum                                                                            210
Now I know where time was spent maintaining which indexes, and I can decide whether it is worth dropping a particular index.  In all, 33 seconds were spent maintaining index T_BC.
When I repeated the test, having dropped index T_BC, the runtime of the test goes down by 21 seconds to 293 seconds. The time spent maintaining other indexes also goes down. Time spent on index T_BCD went from 29 seconds to just 9 seconds. I speculate that this is due to better cache efficiency because it no longer has to cache index T_BC.
More time was spent on other wait events that are not directly associated with the index, so other forms of contention were introduced.  However, the performance of the test as a whole improved, so we are in a better place.
                                         Curr  File                            ASH Object
EVENT                     ACTION         Obj#     # P1TEXT    P2TEXT P3TEXT   secs Type   OBJECT_NAME TABLESPACE_NAME
------------------------- ----------- ------- ----- --------- ------ ------- ----- ------ ----------- ---------------
free buffer waits         UPDATE TEST      -1     0 file#     block# set-id#    41
                          UPDATE TEST      -1     0 file#     block# blocks     39
                          UPDATE TEST   99419     0 file#     block# blocks     12
                          UPDATE TEST   99418     0 file#     block# blocks     11
free buffer waits         UPDATE TEST   99411     0 file#     block# set-id#    10
write complete waits      UPDATE TEST   99413     4 file#     block#            10                    PSDEFAULT
                          UPDATE TEST   99411     0 file#     block# blocks      9
free buffer waits         UPDATE TEST   99412     0 file#     block# set-id#     9
write complete waits      UPDATE TEST   99414     4 file#     block#             8                    PSDEFAULT
write complete waits      UPDATE TEST   99411     4 file#     block#             8                    PSDEFAULT
write complete waits      UPDATE TEST   99418     4 file#     block#             6 INDEX  T_BCD       PSDEFAULT
write complete waits      UPDATE TEST   99412     4 file#     block#             5                    PSDEFAULT
                          UPDATE TEST   99414     0 file#     block# blocks      4
free buffer waits         UPDATE TEST   99414     0 file#     block# set-id#     4
free buffer waits         UPDATE TEST   99413     0 file#     block# set-id#     3
write complete waits      UPDATE TEST   99419     4 file#     block#             3 INDEX  T_BCD_ROUND PSDEFAULT
                          UPDATE TEST   99412     0 file#     block# blocks      3
                          UPDATE TEST   99413     0 file#     block# blocks      3
                          UPDATE TEST   99420     0 file#     block# blocks      2
free buffer waits         UPDATE TEST   99418     0 file#     block# set-id#     2 INDEX  T_BCD
write complete waits      UPDATE TEST   99420     4 file#     block#             1 INDEX  T_BCD_DESC  PSDEFAULT
                          UPDATE TEST   99411     4 file#     block# blocks      1
write complete waits      UPDATE TEST   99415     4 file#     block#             1 TABLE  T           PSDEFAULT
                          UPDATE TEST   99418     0 file#     block#             1
                          UPDATE TEST   99414     0 file#     block#             1
log file switch (private  UPDATE TEST   99418     0                              1 INDEX  T_BCD
strand flush incomplete)
                          UPDATE TEST   99411     0 file#     block#             1
                          UPDATE TEST   99418     0                              1
free buffer waits         UPDATE TEST   99412     4 file#     block# set-id#     1                    PSDEFAULT
free buffer waits         UPDATE TEST      -1     4 file#     block# set-id#     1                    PSDEFAULT
                          UPDATE TEST      -1     0 file#     block#             1
free buffer waits         UPDATE TEST   99420     0 file#     block# set-id#     1 INDEX  T_BCD_DESC
                                                                             -----
sum                                                                            204

No comments :