This post is part of a series that discusses table clustering in Oracle.
The result tables being clustered are also large, containing hundreds of millions of rows. Normally, when I have to rebuild these as non-clustered tables, I would do so in direct-path mode and with both parallel insert and parallel query. However, this is not effective for table clusters, particularly if you put multiple tables in one cluster, as rows with the same cluster key have to go into the same data blocks.
Instead, for each result table in the cluster, I have used DBMS_PARALLEL_EXECUTE to take a simple INSERT…SELECT statement, and break it into pieces that can be run concurrently on the database job scheduler. I get the parallelism, though I also have to accept the redo on the insert.
exec DBMS_PARALLEL_EXECUTE.DROP_TASK('CLUSTER_GP_RSLT_ABS');
DECLARE
l_recname VARCHAR2(15) := 'GP_RSLT_ABS';
l_src_prefix VARCHAR2(10) := 'ORIG_';
l_task VARCHAR2(30);
l_sql_stmt CLOB;
l_col_list CLOB;
BEGIN
l_task := 'CLUSTER_'||l_recname;
SELECT LISTAGG(column_name,',') WITHIN GROUP(ORDER BY column_id)
INTO l_col_list
FROM user_tab_cols WHERE table_name = l_src_prefix||l_recname;
l_sql_stmt := 'insert into PSY'||l_recname||' ('||l_col_list||') SELECT '||l_col_list
||' FROM '||l_src_prefix||l_recname||' WHERE rowid BETWEEN :start_id AND :end_id';
DBMS_PARALLEL_EXECUTE.CREATE_TASK (l_task);
DBMS_PARALLEL_EXECUTE.CREATE_CHUNKS_BY_ROWID(l_task, 'SYSADM', l_src_prefix||l_recname, true, 2e6);
DBMS_PARALLEL_EXECUTE.RUN_TASK(l_task, l_sql_stmt, DBMS_SQL.NATIVE, parallel_level => 24);
END;
/
The performance of this process is the first indication as to whether the cluster key is correct. Too few columns and the population of the table will be much slower because rows have to go in the block already allocated to that cluster key, or if full a new block must be allocated.
NB: Chunking the data by ROWID only works where the source table is a regular table. It does not work for clustered or index-organised tables. The alternative is to chunk by the value of a numeric column, and that doesn't work well in this case because most of the key columns are strings or dates.
Monitoring DBMS_PARALLEL_EXECUTE
There are several views provided by Oracle that can be used to monitor tasks created by DBMS_PARALLEL_EXECUTE.
SELECT * FROM user_parallel_execute_tasks;
Number
TASK_NAME CHUNK_TYPE STATUS TABLE_OWNER TABLE_NAME Column TASK_COMMENT JOB_PREFIX
-------------------- ------------ ---------- ----------- ------------------ ---------- ------------------------------ ------------
Apply
Lang X Ed Fire_ Parallel
SQL_STMT Flag EDITION Trigger Apply Level JOB_CLASS
-------------------------------------------------------------------------------- ---- -------- ------- ----- -------- -----------------
CLUSTER_GP_RSLT_ABS ROWID_RANGE FINISHED SYSADM PS_GP_RSLT_ABS TASK$_38380
insert into PSYGP_RSLT_ABS (EMPLID,CAL_RUN_ID,EMPL_RCD,GP_PAYGROUP,CAL_ID,ORIG_C 1 ORA$BASE TRUE 24 DEFAULT_JOB_CLASS
CLUSTER_GP_RSLT_ACUM ROWID_RANGE FINISHED SYSADM PS_GP_RSLT_ACUM TASK$_38382
insert into PSYGP_RSLT_ACUM (EMPLID,CAL_RUN_ID,EMPL_RCD,GP_PAYGROUP,CAL_ID,ORIG_ 1 ORA$BASE TRUE 32 DEFAULT_JOB_CLASS
Each task is broken into chunks.
SELECT task_name, status, count(*) chunks
, min(start_ts) min_start_ts, max(end_ts) max_end_ts
, max(end_ts)-min(start_ts) duration
FROM user_parallel_execute_chunks
group by task_name, status
order by min_start_ts nulls last
/TASK_NAME STATUS CHUNKS MIN_START_TS MAX_END_TS DURATION
-------------------- ---------- ---------- ----------------------- ----------------------- -------------------
CLUSTER_GP_RSLT_ABS PROCESSED 80 22/12/2023 09.58.37.712 22/12/2023 10.06.32.264 +00 00:07:54.551373
CLUSTER_GP_RSLT_ACUM PROCESSED 402 22/12/2023 10.08.58.257 22/12/2023 10.38.36.820 +00 00:29:38.562700
In this case, each chunk processes a range of ROWIDs. Each chunk is allocated to a database scheduler job.
SELECT chunk_id, task_name, status, start_rowid, end_rowid, job_name, start_ts, end_ts, error_code, error_message
FROM user_parallel_execute_chunks
WHERE task_name = 'CLUSTER_GP_RSLT_ABS'
ORDER BY chunk_id
/
Chunk
ID TASK_NAME STATUS START_ROWID END_ROWID JOB_NAME START_TS END_TS ERROR_CODE ERROR_MESSAGE
----- -------------------- ---------- ------------------ ------------------ --------------- ----------------------- ----------------------- ---------- -----------------
1 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAAZgAAAA AAAUzUAAmAADp7VH// TASK$_38380_1 22/12/2023 09:58:37.712 22/12/2023 10:00:21.622
2 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAADp7WAAA AAAUzUAAmAAGwkrH// TASK$_38380_3 22/12/2023 09:58:37.713 22/12/2023 10:00:20.107
3 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAGwksAAA AAAUzUAAmAAHvwBH// TASK$_38380_2 22/12/2023 09:58:37.713 22/12/2023 10:00:14.939
4 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAHvwCAAA AAAUzUAAmAAIn5XH// TASK$_38380_9 22/12/2023 09:58:37.864 22/12/2023 10:00:28.963
5 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAIn5YAAA AAAUzUAAmAAJ58tH// TASK$_38380_12 22/12/2023 09:58:37.865 22/12/2023 10:00:30.494
6 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAJ58uAAA AAAUzUAAmAAKzADH// TASK$_38380_8 22/12/2023 09:58:37.865 22/12/2023 10:00:26.049
7 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAKzAEAAA AAAUzUAAmAALf7ZH// TASK$_38380_4 22/12/2023 09:58:37.865 22/12/2023 10:00:28.017
8 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAALf7aAAA AAAUzUAAmAAMHGvH// TASK$_38380_10 22/12/2023 09:58:37.885 22/12/2023 10:00:23.326
9 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAMHGwAAA AAAUzUAAmAAP5aFH// TASK$_38380_13 22/12/2023 09:58:37.907 22/12/2023 10:00:22.660
10 CLUSTER_GP_RSLT_ABS PROCESSED AAAUzUAAmAAP5aGAAA AAAUzUAAnAACr1bH// TASK$_38380_5 22/12/2023 09:58:37.929 22/12/2023 10:00:21.959
…
However, one job may process many chunks.
SELECT t.task_name, t.chunk_type, t.table_name, c.chunk_id, c.job_name, c.start_ts, c.end_ts
, d.actual_start_date, d.run_duration, d.instance_id, d.session_id
FROM user_parallel_execute_tasks t
JOIN user_parallel_execute_chunks c ON c.task_name = t.task_name
JOIN user_scheduler_job_run_details d ON d.job_name = c.job_name
WHERE t.task_name = 'CLUSTER_GP_RSLT_ABS'
ORDER BY t.task_name, c.job_name, c.start_ts
/
Chunk Inst
TASK_NAME CHUNK_TYPE TABLE_NAME ID JOB_NAME START_TS END_TS ACTUAL_START_DATE RUN_DURATION ID SESSION_ID
-------------------- ------------ --------------- ----- --------------- ----------------------- ----------------------- ----------------------- ------------------- ---- ------------
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 1 TASK$_38380_1 22/12/2023 09:58:37.712 22/12/2023 10:00:21.622 22/12/2023 09:58:37.660 +00 00:07:52.000000 1 3406,24003
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 23 TASK$_38380_1 22/12/2023 10:00:21.710 22/12/2023 10:02:01.916 22/12/2023 09:58:37.660 +00 00:07:52.000000 1 3406,24003
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 44 TASK$_38380_1 22/12/2023 10:02:02.008 22/12/2023 10:03:31.546 22/12/2023 09:58:37.660 +00 00:07:52.000000 1 3406,24003
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 57 TASK$_38380_1 22/12/2023 10:03:31.640 22/12/2023 10:05:05.398 22/12/2023 09:58:37.660 +00 00:07:52.000000 1 3406,24003
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 73 TASK$_38380_1 22/12/2023 10:05:05.494 22/12/2023 10:06:29.262 22/12/2023 09:58:37.660 +00 00:07:52.000000 1 3406,24003
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 8 TASK$_38380_10 22/12/2023 09:58:37.885 22/12/2023 10:00:23.326 22/12/2023 09:58:37.877 +00 00:07:54.000000 1 4904,44975
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 27 TASK$_38380_10 22/12/2023 10:00:23.394 22/12/2023 10:01:59.096 22/12/2023 09:58:37.877 +00 00:07:54.000000 1 4904,44975
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 42 TASK$_38380_10 22/12/2023 10:01:59.185 22/12/2023 10:03:37.657 22/12/2023 09:58:37.877 +00 00:07:54.000000 1 4904,44975
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 61 TASK$_38380_10 22/12/2023 10:03:37.742 22/12/2023 10:05:12.680 22/12/2023 09:58:37.877 +00 00:07:54.000000 1 4904,44975
CLUSTER_GP_RSLT_ABS ROWID_RANGE PS_GP_RSLT_ABS 79 TASK$_38380_10 22/12/2023 10:05:12.776 22/12/2023 10:06:32.142 22/12/2023 09:58:37.877 +00 00:07:54.000000 1 4904,44975
…
You can also judge how well the clustering is working by looking at how much database time was consumed by the various events. PS_GP_RSLT_ABS was inserted first, then PS_GP_RSLT_ACUM. We can see that more time was spent on the second table that was inserted, and more time spent on physical read operations as rows have to go into specific blocks with the same cluster keys.
select c.task_name, c.status, count(distinct c.chunk_id) chunks, h.module, h.event
, sum(usecs_per_Row)/1e6 ash_secs
from gv$active_session_history h
, user_parallel_execute_chunks c
, user_parallel_execute_tasks t
where h.sample_time BETWEEN c.start_ts AND NVL(c.end_ts,SYSDATE)
and t.task_name = c.task_name
and h.action like c.job_name
group by c.task_name, c.status, h.module, h.event
order by task_name, ash_Secs desc
/
TASK_NAME STATUS CHUNKS MODULE EVENT ASH_SECS
-------------------- ---------- ------ --------------- ---------------------------------------------------------------- --------
CLUSTER_GP_RSLT_ABS PROCESSED 80 DBMS_SCHEDULER 3534
PROCESSED 78 DBMS_SCHEDULER enq: FB - contention 1184
PROCESSED 80 DBMS_SCHEDULER db file parallel read 1161
PROCESSED 80 DBMS_SCHEDULER buffer busy waits 674
PROCESSED 79 DBMS_SCHEDULER db file scattered read 490
…
CLUSTER_GP_RSLT_ACUM PROCESSED 401 DBMS_SCHEDULER 10174
PROCESSED 401 DBMS_SCHEDULER db file sequential read 8813
PROCESSED 32 DBMS_SCHEDULER log file switch (archiving needed) 4623
PROCESSED 389 DBMS_SCHEDULER db file parallel read 1396
PROCESSED 383 DBMS_SCHEDULER db file scattered read 1346
PROCESSED 295 DBMS_SCHEDULER buffer busy waits 769
PROCESSED 287 DBMS_SCHEDULER enq: FB - contention 715
…